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The dispersion relation for internal waves travelling in the horizontal direction of a 
two-dimensional stratified shear flow is affected by the presence of topography, or 
upper and lower boundaries, which vary only in the horizontal direction normal to that 
of the flow. This is in accordance with Grimshaw’s (1978) findings for long internal 
waves. Such topography, however, imposes boundary conditions which affect both the 
growth rates and orientation of the crests of unstable disturbances. Predictions are 
derived for the particular case of instability of a fluid with a thin interface separating 
two fluids of different densities in relative flow, which are confined in a tube with 
horizontal generators but which has upper and lower parallel plane boundaries 
inclined to the horizontal at an angle a. These predictions are compared with 
laboratory experiments. There is good qualitative agreement and some quantitative 
agreement, at least when the predicted angle, y, between the crest lines of the 
disturbances and the cross-flow direction, is small. Relatively small disturbances, or 
billow, amplitudes are found along the centreline of the tube. At large y, however, the 
disturbance crests becomes less well-ordered, with billows on one side of the tube 
centreline connecting with neighbouring pairs on the other, so evolving a zigzag 
pattern. The results have application to naturally occurring flows in estuaries and 
channels, and to the development of instability in the stratified atmosphere. 

1. Introduction 
Both freely propagating waves and the development of instability, occurring in the 

stably stratified shear flows which occur in the natural fluid environment, will be 
affected by the presence of the underlying topography, for example by ridges and 
valley slopes in the atmosphere, by oceanic continental slopes or the cross-sectional 
shape of estuaries and sea straits, and the slopes of the boundaries of lakes. We have 
chosen for simplicity to study the effect of topography which varies in a direction 
transverse to the mean flow, as it might for flow in a channel of uniform cross-section 
or flow parallel to the contours of a slope, so that the mean motion may be taken to 
be horizontally uniform, unchanging with distance along the sloping boundary, but 
possibly changing with height. 

The propagation of long interfacial waves in a stratified fluid in a non-rotating 
channel of arbitrary cross-section has been studied by Grimshaw (1 978), who 
concluded that the phase of the waves is independent of the cross-channel y- 
coordinate, so that wave crests are everywhere normal to the down-channel x-direction 
in which the waves advance. ‘Billows’ developing in a stratified shear flow in 
rectangular channel with horizontal boundaries are also observed to be orientated, on 
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FIGURE 1. The coordinate system. 

average, normal to the (vertical) sidewalls, that is with constant phase lines normal to 
the flow or in the direction of the mean flow vorticity vector (Thorpe 1971). This is 
consistent with Yih’s (1955) extension of Squire’s theorem, although the theorem 
places no limitation on the development of instability imposed by the presence of 
boundaries. 

We show here that, whilst the crests of internal waves propagating along topography 
in non-rotating stratified shear flow have generally no phase shift, unstable disturbances 
or ‘billows’ may be tilted across the flow by the presence of topography. The effect is 
demonstrated both analytically (92) and by laboratory experiments (93). 

2. Theory 
2.1. The general solution 

We consider small displacements in an inviscid non-diffusive stably stratified shear flow 
parallel to the horizontal x-direction. The fluid density, p(z), and velocity, (U(z), 0, 0) ,  
vary only in the vertical z-direction, and the fluid is confined between fixed upper and 
lower boundaries, the level of which varies in the second horizontal direction, y, 
normal to x and z ,  and transverse to the flow, as shown in figure 1. Infinitesimal 
disturbances are governed by the equation 

where w* = w( y, z) exp ik(x - c t )  is the vertical velocity, k is the (real) x-wavenumber 
component of the disturbance, c is the phase speed, which may be complex, N is the 
buoyancy frequency, and U“ = d2U/dz2. The Boussinesq approximation has been 
made in deriving (1). When there is no variation in the y-direction, (1) reduces to the 
Taylor-Goldstein equation (Drazin & Reid 1981). The corresponding x- and y- 
components of the perturbation velocity, u* and u* respectively, are related to w by 

(3) 
au  aw 
ay ay 

and k2(U-c)v = -ik(U-c)-- U‘-, 
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where (u*, v*) = (u, u) exp ik(x- ct) and U' = dU/dz. The boundary conditions are 

d5. 
dY 

w* = EY*- at z = Hi+Eci(y), i = 1,2, (4) 

where we have introduced an ordering parameter, E (which may subsequently be 
equated to unity), and we shall assume that E& < Hi and, in particular, that ed&/dy 
is small. We shall assume that the can be expressed as Fourier series in y with 
periodicity selected so that v = 0 at positions, or at lateral boundaries, where y = & b, 
and that solutions for a general boundary shape can be found by superimposing 
solutions which separately satisfy each Fourier component. This will be further 
elaborated in 42.4. To illustrate the method, we select a component Ci = Aisinly. 
Paying regard to the appropriate phase relations imposed by the boundary conditions, 
we take 

u = quo + EU, sin ly + e2(u2, + u,, cos 21y) + . . .I, 
Y = 6[al cos ly + e2u2, sin 21y + . . .I, 
w = S[w, + EW, sin ly + e2(w,, + w,, cos 21y) + . . .] J ( 5 )  

and 

making a ' small transverse slope ' perturbation, E ,  to already small-amplitude waves. 
Here 6 is an ordering parameter proportional to the disturbance amplitude at some 
given time. Higher-order terms in 6 are neglected since (1H3) are already linearized in 
6. The terms ul, v,, w,, u12, etc. are functions of z only. The boundary conditions (4) are 
expanded as Taylor series about z = Hi, and solutions are found by successive 
comparison of terms. 

At order 6eo, (1) reduces to the Taylor-Goldstein equation with c = c,, subject to the 
boundary condition w, = 0 at z = Hi obtained from (4), providing an eigenvalue 
equation for c,. Equation (2) gives u, = (i/k) dw,/dz, whilst (3) is satisfied identically. 

c = c, + EC1 + E2C2 + 0(€3), 

At order 62, w, must satisfy 

d2 N 2  
Y(k,l)w = - {dz2 -+ ( (U-C , )~  

with c1 = 0 and the boundary conditions w1 = - Ai dw,/dz at z = Hi. Equations (2) 
and (3) then give expressions for u1 and Y,. 

At order 6s2 we find that 

with 
Ai12U' dw, 

(7) 

which provides an eigenvalue equation for c2. We find also that 

Y ( k ,  21) w22 = 0, (9) 

with + ( k 2 + 2 l 2 ) L  dz at z =  Hi.  
dw I 

The solution for the vertical component of the disturbance is 

w* = q w ,  + EW, sin ly + e2(wl2 + w,, cos 21y)l exp (ik[x- (c, + 2c2)  t ] } .  (1 1) 

The displacement of an isopycnal surface p(zl)  from the level z = z,, say, is given (to 
the same order as terms in (1 1)) by q* = - iw*/[k( U -  c)], evaluated at z = z1 (Thorpe 
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1978). The solution, (1 l), represents a disturbance with amplitude modulated in the y- 
direction and with phase speed, Re (c, + e ' ~ ~ ) ,  and growth rate Im{k(c, + e'~,)}. If w ,  or 
waz have imaginary parts, as (from (6) and (9)) will generally be the case if c, has an 
imaginary part, corresponding to unstable modes, then the disturbance will have a 
phase which varies in the y-direction : 

w* = W( y) exp [ k Im (c, + e'c,) t] exp {i[k{x- Re (c, + e'c,) t> + @( y)]}, 

where W( y )  is the modulus and @( y) is the phase of the coefficient of the exponential 
term in (1 1). If however, w, and w,, are real, as is the case when c, lies outside the range 
of U and non-singular solutions of the Taylor-Goldstein equation represent shear- 
modified internal gravity waves (Banks, Drazin & Zaturska 1976), then @( y) will be 
zero and no shift of the wave phase with y will occur. Further, if the imaginary part 
of c, is zero, so that to first order the solutions represent stable solutions, then the 
imaginary part of c, is also zero. The stability boundary of the unstable disturbances 
is therefore not affected by the presence of boundaries, although as we shall find later 
(in §2.4), the growth rates of unstable modes may be reduced. 

We now offer two examples in which analytical solutions can readily be found, 
before, in $2.4, deriving numerical results for a flow which can be realized in the 
laboratory. 

We seek the effects of sinusoidal topography on internal waves propagating in a fluid 
with no mean flow and uniform buoyancy frequency. Without loss of generality, we 
take Hl = - H, = H and, for illustration, we take A, = A ,  = A, so that the fluid is 
confined between boundaries at i- H+ eA sin ly. We select the first-mode solution of the 
Taylor-Goldstein equation with U = 0, 

with ci = N2/[k2+(n/2H)2] and u, = -(in/2kH) Wsin(nz/2H). At order SE, 

with q = (n/2H) (1 + 1 z/kz) l /n  and B = (An/2H)/sin [( 1 + 1 2/k2)1/2 n/2], whilst at 
order 6 2  

ABn2 cosqH 
w21 = 2q(21kH)~ cos q1 H 

2.2. The case U = 0, N = constant 

w, = Wcos(nz/2H), (12) 

w1 = Bsinqz, (13) 

(14) 

w2, = Qc2zsinnz/2H, (15) 

cos 41 z, 

and (16) c2 - A2k2(1 + 21 2 /k2)  ( ~ / 2 k H ) ~  cot qH _ -  - 
C, [ 1 + (n/2kH)2] n( 1 + lZ/k')'/Z ' 

with Q = (2kH/nc,) [k2 + (n/2H)7 W and q1 = (n/2H) (1 + 412/k2)1/2. The terms w, 
and wZ2 are, as expected, real, so that the wave has no phase change in the y-direction. 
The phase speed c, is real and negative, implying that the effect of the sinusoidal 
topography is to reduce the phase speed. These results are consistent with those of 
Grimshaw (1978) for long internal waves. 

2.3. Two-layer shear flow 
A simple illustration of the effects of tilted boundaries on stable and unstable shear 
flows is given by a fluid with speed and density (U,p) = (Ul,pl) for z > 0, and 
(U,, p, > p,) for z < 0, confined between rigid boundaries at z = HI +A, sin ly and 
z = - H ,  + A, sin ly. We make the usual assumption that the flow in each layer is 
irrotational so that velocity potentials 

C$: = 6 [C$Oi(z) + C C $ ~ ~ ( Z )  sin ly + . . .] exp ik(x - ct), i = 1,2 (17) 
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exist which satisfy Laplace's equation. It is sufficient for our purposes here to include 
only terms to order 8e. Solutions are obtained by matching the pressure and by 
satisfying the kinematic conditions at the disturbed interface, 

(18) r* = 8[ro + €7, sin ly] exp ik(x- ct), 

and by satisfying the Taylor series expansion of the upper and lower boundary 
conditions. The first-order solution follows that of Drazin & Reid (1981, section 4), 
giving the eigenvalue equation for the zero-order phase speed, co: 

P A C 0  - U1>2t2 +P,(CO - U2I2t, = (g/k) t, t,@, - P A  (19) 
where ti = tanh kHi, and the velocity potentials are 

(20) 
- illo cosh k(z - H,) ir, cosh k(z + H,) 

$01 =- 17,-c, sinhkH, ' '02 = Uz-co sinhkH, ' 

The order-be interfacial displacement, rl, is given by 

(U1- co>2 
tanhmH,-P2 tanhmH, 

= 
sinh kH2 sinh mH, 

where m = (k2 + 1 ,),I2, which is the z-exponent of the $li terms. 
If, for example, A ,  = A ,  = A ,  Hl = - H, = H, and U, = U, = 0 representing a two- 

layer fluid with no shear, then c: = (gA/k) tanh kH, where A = @, -p,)/@, +p2)  is the 
fractional density difference. Since c, is real, the solution is one of propagating waves 
with a y-modulated amplitude which is equal to 87, [1+ (eAk2A/M) sin ly], where 
M = mcoshkHsinhmH-ksinh kHcoshmH, which is positive. 

If however A ,  = 0, A ,  = A ,  H,  = -H,  = H, d < 1 and U, = - U2 = U, representing 
a shear flow in a channel bounded by a level water surface above and sinusoidal 
topography below, the phase speed is imaginary, c, = f. i U(x - x-1)1/2, = f. ic,, say, 
where x = ( U2k/gtd) with t = tanh kH, and yl = (7, Ak2/2M) [ 1 f 2ix(x2 - 1)'/']. For 
wavenumbers, k, such that x > 1, the solution to order 8e represents a mode with an 
exponentially growing component : 

r* = 8ro { 1 + c(Ak2/2M) [ 1 + 2ix(x2 - 1)'12] sin ly} exp (ikx) exp (cI t), 

= a(y) exp [i(kx + $(Y))l exp ( C I  0% (22) 
where a( y) = 6ro q and tan $ = (eAk2X/M) (x2  - 1)l/, sin ly, with 

q = {[l +e(Ak2/2M)sinly]. 

This disturbance has an amplitude, a, which depends on y, and a phase which varies 
with y, increases with the boundary slope, eAk, and increases as the non-dimensional 
wavenumber, kH, increases for fixed values of 1H and U2/gAH. 

2.4, Uniformly sloping boundaries 
In the experiments described in $ 3  we examine the development of an instability in a 
stratified shear flow, 

U = Uo erf z/zo, with p = po( 1 - d erf z/zo), (23) 
confined between parallel boundaries at z = f H+ cy tan a. The flow is characterized 
by the minimum Richardson number, J = gAz,n1/2/(2Ui) which occurs at z = 0, and 
by the non-dimensional interface thickness scale n112z,/2H. To a first approximation, 
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FIGURE 2. The variation of the stability boundaries with boundary separation, for (a) the 
error function profile, (23), at specified values of 2H/rr1/2z0; and (b) for U = U,, tanh(z/z,), 
p = po [ 1 - A  tanh (z/z,)] at specified values of H/z,, reproduced from Hazel (1972). 

the lateral boundaries may be taken to be at y = f b. We write the upper and lower 
boundary conditions as z = +_ H+ 6 c a, sin I ,  y with I, = n(2n + 1)/2b, n = 0, 1,2, . . ., 
and a, = 8b( - 1)" tan a/[n(2n + l)J2. The solution is found as in 92.1 but with 

where 9 ( k ,  0) w, = 0 with w, = 0 at z = H ,  giving the eigenvalue equation for c,, 
2 ( k ,  I , )  wl, = 0, with wln = -a, dw,/dz at z = + H. The terms of order 6e2 are first 
wZ1, which satisfies (7) with 

w = 6[w,+eC ~ ~ , s i n I , y + 2 ( ~ ~ ~ + ~  W ~ ~ , C O S ~ ~ , ~ ) +  ...I, (24) 

at z = +H,  

so giving an equation for c,; and secondly w ~ ~ , ,  which satisfies 2 ( k ,  21,) wz2, = 0 with 

The corresponding solution expansion for z, (see (5)) satisfies z, = 0 at the lateral 
boundaries. 

These equations have been solved numerically. Since a, decreases rapidly with n, a 
good approximation is found by truncating the series at n = 4. The stability of the flow 
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FIGURE 3. The spanwise variation of amplitude (dotted line), A = 1 + C wlnr sin 1, y /w, ,  and the shape 
of a constant phase line (solid line), with J = 0.044, k = 1.17 cm-l, z o / H  = 0.146, a = 14.0” and the 
x-axis plotted to increase towards the left, corresponding to the conditions of the experiments shown 
in figure 7. 

(23) in an infinite fluid has been studied by Hazel (1969; see also Thorpe 1971). The 
critical Richardson number is 0.25 and instability is found at sufficiently small 
Richardson numbers in a range of non-dimensional wavenumbers, k1?/~~, /2 ,  between 
0 and 0.91. The effect of plane horizontal boundaries on flows and density profiles of 
hyperbolic tangent shape, to which the error function profiles, (23), approximate, has 
been studied by Hazel (1972). He found that as a non-dimensional parameter, H 
divided by the interface thickness, decreases, the effect is first to destabilize the longer 
waves and then, as H becomes comparable to the interface thickness, to stabilize the 
flow. Similar results are found here for the error function profile, as shown in figure 2. 
The phase speed of the unstable modes is zero. 

The variation in the y-direction of the disturbance amplitude and phase of unstable 
modes may be determined from the expansion to order &, as in $2.3. Since c, = fic, 
is pure imaginary, and if wl, = wlnr+iwlni, we can write the growing mode of 
instability as w* = W( y, z )  exp (cI t) exp i[kx + q5( y)], where 

W(Y,Z) = dw,[1 +“xWlnrSin~,Y/w,l (27) 
and tan q5 = wlni sin I, ylw,, (28) 
which is proportional to the boundary slope, E tan a. The displacement at z = 0, where 
U = 0, is then q* = w*/kc,, so that (27), with division by kc,, gives the isopycnal 
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Horizontal pivot 

w- Horizontal 

FIGURE 4. Sketch showing the orientation of the tube used in the laboratory experiments, and the 
coordinate axes. 

disturbance amplitude, and (28) gives its variation with phase, as y varies. Figure 3 
shows the variation of amplitude and the position of the constant phase line, kx + q5( y ) ,  
from y / b  = - 1 to y / b  = 1 for a = 14.0°, z o / H  = 0.146, kH = 7.02 and J = 0.044. The 
parameter values and direction of axes are chosen to correspond to a flow realized in 
the laboratory experiments described in 93. The amplitude is smallest at y = 0 and the 
disturbance, the ‘crest lines’ of growing billows, is twisted across the containing 
channel. Solving (7), subject to (25),  for c, with the same parameters gives 
czi /c0 = -2.08 x lop3 and c , ~  = 0, showing that in this case the sloping boundaries 
have a stabilizing effect. Calculations of cai in (J, k)-space at the same value of a show 
that is remains negative, with largest values at small wavenumbers. This shifts the locus 
of the maximum growth rate (as shown, for example, in Thorpe 1971, figure 2) to larger 
wavenumbers. This effect contrasts with that of parallel boundaries symmetrically 
positioned on either side of a density and shear interface, where a reduction in their 
separation tends to move the fastest growing waves to lower wavenumbers, as 
illustrated in figure 2. Calculations have also been made with non-symmetrically 
placed, non-sloping boundaries (i.e. a = 0, HI  += H,). In this case the phase speed, cor, 
of the fastest growing mode is no longer zero, but is in the direction of flow in the 
shallower layer. The critical Richardson number is reduced and the growth rates at 
given values of k and J are also reduced. These effects are most prevalent on 
disturbances with large wavenumbers, resulting an increase in the wavelength of the 
fastest growing disturbances. 

3. Experiments 
We have made experiments in a Perspex tube 2.45 m in length, with rectangular 

cross-section 0.2 m x 0.06 m. The tube is filled in the vertical position with two equal 
layers, the upper being fresh water and the lower a weak brine solution, as described 
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FIGURE 5(u-c). For caption see page 59. 

57 
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FIGURE 5(d-8. For caption see facing page. 
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by Thorpe (1971). The fractional density difference ranges from 0.029 to 0.041. The 
tube is then slowly rotated (to avoid much mixing) about a horizontal pivot until the 
long axis (parallel to the generators) of the tube is horizontal. The pivot is normal to 
this long axis of the tube but makes an adjustable angle, a, between 3.6 and 15.7" 
(estimated to within 0.1") with the 0.2 m long side (as shown in figure 4), so that, after 
rotation, the lower and upper surfaces of the tube are inclined to the horizontal, and 
the thicknesses of the fresh water and brine layers vary across the width of the tube. 
Provided a < 16.7", the centreline of the interface (at z = 0) does not intersect the 
upper and lower surfaces of the tube. Diffusion is then allowed to occur for a time, 7, 
until the density interface (of approximately error function form) has reached a given 
thickness, zo = ~ [ K ( T  + 70)]1/2, where 70 represents a virtual diffusion time associated 
with filling and tilting the tube to the horizontal. The thickness zo is chosen to be 
between 0.44 and 0.95 cm and estimation to within 0.03 cm. Flow is produced by 
rapidly tilting the tube about the horizontal pivot through an angle of about 5". This 
initiates a uniformly accelerating shear flow (Thorpe 1968) which, except in the viscous 
boundary layers, is independent of y, has a z-profile similar to the density (i.e. an error 
function dependence on z ) ,  and is maintained until the tube is rapidly returned to the 
horizontal at a time when the minimum Richardson number has fallen to some value, 
J, between 0.044 and 0.13 (J is estimated to within f 0.006). Measurements of velocity 
from the motion of neutrally buoyant particles when a = 14.7" show that, during the 
acceleration, the mean spanwise velocity is about 0.2 % of the mean flow parallel to the 
sidewalls ; the initial flow is purely longitudinal to well within the experimental 
uncertainties. The subsequent flow in the centre of the tube is steady, except for viscous 
effects or the development of instability, until disturbed by the arrival of surges from 
the ends. Shadowgraphs, taken by shining a beam of light downwards through the tube 
onto a transparent screen fixed to its lower surface which is photographed by camera 
or imaged by video from below, and dyed lower layers are used to visualize the 
development of instability and, in particular, to show the cross-tube shape of the 
developing billows. 

Figure 5 shows shadowgraphs of the development of instability at a Richardson 
number J = 0.050 and tilt angle a = 6.8". The orientation of the flow and other 
parameters are given in the caption. The billows can be seen to be twisted across the 
tube, and 'pinched' near the centre of the tube. Figure 6 shows billows at similar states 
of development and in similar zo/H and J parameter ranges, but for different tube tilt 
angles, a. The pinching is enhanced at larger angles, a. Figure 7 shows the development 
of instability at a = 14.0" and J = 0.044. The general form predicted in 52.4 and shown 
at the same parameter values in figure 3, is reproduced by the first, second and fifth 
billows from the left in parts (b, c). One ' half-tube wide' billow is seen to develop (at 
the top, fourth billow from the left), which then connects (figure 7d) to the lower half 
of both its neighbouring billows. This effect produces a pattern with narrow vortex 
structures at a large angle to the cross-tube direction. The consequential breakdown of 
the billow structure (figure 7d-f) contains much more fine structure than is commonly 
found when the billows are formed more regularly across the tube, as in figure 5 (&A. 

FIGURE 5. Shadowgraph taken from below the tube showing the development of instability in a flow 
with J = 0.050, a = 6.8", and z o / H  = 0.075. The brine layer decreases in depth from the bottom of 
the frame to the top and flows to the right. Comparison with figure 4 shows that the corresponding 
direction of the positive y-axis is upwards and, since the photographs are from beneath the tube, the 
x-axis is towards the left, as in figure 3. The tube has been tilted (down to the right) for a time 
to = 4.50 s to generate the shear flow, and the times of the photographs are (a) 0.75 s, (b) 1.08 s, (c) 
1.40 s, ( d )  1.73 s, (e) 2.05 s and cf) 2.38 s after to. The imaged region is 19.3 cm in height. 
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FIGURE 6. Shadowgraphs, as in figure 5, showing the orientation of billows in the tube. (a) J = 0.053, 
z o / H  = 0.154, a = 3.8", frame width = 19.6 cm and to = 4.80 s with the photograph being taken 
0.08 s later; (b) J =  0.057, z o / H  = 0.154, a = 12.7", frame width = 18.6 cm and to = 4.68 s with 
the photograph being taken 0.12 s later. 

4. Discussion 
Although the theory applies strictly to infinitesimal disturbances whilst the images 

in the shadowgraphs are of well-developed billows, the experiments do exhibit two 
features predicted by the theory: the reduced amplitude of the disturbances in the 
centre of the tube and the twisted shape of the billows. The maximum gradient of a line 
of constant phase occurs at y = 0 and is given by tan y = - k-l(d+/dy) at y = 0, or 

(29) tan Y = - (Z 172 W1ni)l(kWo,)7 

with values of the w-components evaluated at z = 0. A comparison of this predicted 
value with the experimental observations, calculated using the values of J, kH, zo /H  
and a of the experiments, is shown in figure 8. The variation in y is dominated by 
variations in k and z o / H  and through the scaling of win, (29), tan y is proportional to 
tana. The values of y are relatively insensitive to changes in J .  Some agreement is 
found when the predicted y is small; the r.m.s. deviation of the observed angle from 
that predicted is 6.5" for 0 < y < 40". Above 40", (29) overpredicts the mean 'twist' 
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FIGURE 7(u-c). For caption see page 63.  
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FIGURE 7(d-f). For caption see facing page. 
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angle. These points generally correspond to large a (> 1 1") or to values of 2H/n1/2z, 
which are less than 10, the value (Hazel, 1972) at which the presence of boundaries has 
an appreciable effect on the development of the instability. In these conditions w , , ~  is 
of similar magnitude to war, and the truncation of the series expansion for w at order 
& is no longer valid. In the experiments a qualitative change in the appearance of the 
billow structure occurs. There is no longer a clear spanwise variation in the billow 
angle, but the billows evolve as alternating large negatively sloping and small positively 
sloping billows connected close to the sidewalls to form a wall-to-wall zigzag structure. 

Individual billows observed in past experiments on stratified shear flows confined 
between parallel horizontal boundaries are often observed to be slightly tilted across 
the containing tube. Examples can be seen in Thorpe (1971, figure 5 ;  1985, figure 6 ;  
and 1987, figure 4). In consequence, very rarely in a subsequent 'pairing' of 
neighbouring billows a precisely two-dimensional process. On average however the 
billow orientation is transverse to the mean flow, i.e. the mean lines of constant phase 
are parallel to the mean flow vorticity. It is hardly surprising that the orientations of 
the billows seen, for example in figures 5 and 7 ,  are not all parallel or tilted in exactly 
the same directions across the tube. Some variation, evident in the scatter bars of figure 
8, is a result. 

It is assumed, in making comparison with the theoretical results of $2.4, that the 
presence of the non-vertical sidewalls does not affect the onset and small-amplitude 
growth of the instability in the body of the tube, and that the effects of the viscous 
boundary layers which occur at the sidewalls (and at the upper and lower boundaries) 
of the tube, are negligible. It is clear in the photographs, however, that the sidewalls 
introduce substantial local changes in the form of the billows, 'pinching' them and 
producing a crossing structure in the shadowgraph images within about 1 cm of the 
walls (e.g. see top of figure 5 b). An early transition to turbulence is triggered in their 
vicinity (figure 5c). These effects are also apparent in experiments with horizontal 
upper and lower boundaries (Thorpe 1985, figure 6a-d; and 1987, figure 4)  when 
turbulence also sets in at an earlier stage near the sidewalls than in the centre of the 
tube; the billows seen here are not significantly different. It is worth asking whether the 
tilt of the sidewalls may produce novel effects. A full consideration would require at 
least the development of solutions which satisfy the condition of no flow normal to the 
tilted sidewalls, and this is not attempted. We have however considered one effect, that 
of increasing the across-tube length of the density interface. The maximum possible 
increase is from 2b to 2(b2 + H2)lI2 when 01 = tan-' (H/b ) ,  so that the interface length 
is increased from 20 to 20.9 cm, and this results in an increase in the modulus of the 
estimated 'twist' angle of 4.6% when y = 54.2" and of 4.9% when y = 33.2". This 
effect is small in comparison to the existing uncertainties of prediction indicated in figure 
8. The thickness of the viscous boundary layers at the sidewalls at the time of onset of 
instability (typically 5-6 s) will also have an effect, reducing the transverse width of the 
interface over which there is a shear by some 0.8 cm and tending to mask the effects of 
sidewall tilt. Two other factors may affect transitional phenomena. For large angles of 
tilt, a, one fluid layer near the sidewalls is shallow, and interfacial waves derived from 
disturbances when the tube is tilted, and propagating across the tube into a shallowing 
layer, may be amplified, as are waves approaching a beach. More important is that if 

FIGURE 7. Shadowgraph, as in figure 5, showing the development of billows when J = 0.044, 
z o / H  = 0.146, a = 14.0'. The tube is tilted for a time to = 4.40 s and the times of the photographs 
are (a) 0.50 s, (b)  0.82 s, (c) 1.14 s, (d) 1.50 s, (e) 1.86 s and cf) 2.20 s after to. The imaged region is 
18.5 s wide. The focal plane of the camera is horizontal, leading to some perspective distortion, 
about 3" at the frame edge. 



64 S.  A .  Thorpe and J .  T. Holt 

FIGURE 8. Comparison of estimated and observed ‘twist’ angle of the billows at y = 0. Data are taken 
from 16 experiments with 0.044 < J < 0.114 and 0.39 < kx’/2z,/2 < 0.59. The vertical error bars 
represent the standard deviation from the mean of the observed billow angles, and the horizontal bar 
represents the typical uncertainty resulting from probable errors in the experimental values in 
estimating the billow angle from (29).  

the developing billow vortices are not normal to the sidewalls, the vortices may be 
severely distorted locally by the flow field arising from their effective image system. 

Whilst the nature of the transition to turbulence is beyond the scope of this paper, 
comparison of figures 5 and 7 shows that the more severe the amplitude and phase 
distortion of the billows, the more frequent is the subsequent occurrence of ‘ knots ’ and 
connecting ‘vortex tubes’ described by Thorpe (1985, 1987). It is not known if, or 
when, the fine structure and enhanced turbulent diffusion of mass and momentum 
associated with these features dominates over that resulting from the winding-up and 
subsequent secondary instability of isopycnal surfaces in the billows. The presence of 
such regions of turbulence does however suggest a novel mechanism by which 
topography may locally enhance clear-air turbulence in the atmosphere. A particular 
application of the results is to the development of instability in stratified estuaries, 
channels or shallow lakes. It is expected that billows developing in the ocean or the 
atmosphere on a shear layer lying between, or adjacent to, stable layers of large density 
gradient on which internal waves are propagating, will also be distorted by their 
presence. This may explain why the linear billow clouds (Ludlam 1987) seen, for 
example, in altocumulus layers in the atmosphere preceding warm fronts, are often 
non-parallel. 

J. T. H. was supported by a studentship from the Natural Environment Research 
Council, and his contribution to this paper forms part of a PhD dissertation submitted 
to the University of Southampton. 
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